A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity
Amir Jamali,
Amirhossein Ranjbar,
Jafar Heydari () and
Sina Nayeri
Additional contact information
Amir Jamali: University of Tehran
Amirhossein Ranjbar: University of Tehran
Jafar Heydari: University of Tehran
Sina Nayeri: University of Tehran
Annals of Operations Research, 2022, vol. 319, issue 1, No 38, 1265-1300
Abstract:
Abstract As the occurrence of disasters has increased frequently and has resulted in growing concern about their adverse effects on the environment, Sustainable Humanitarian Logistics (SHL) has received great attention recently. SHL aims to reduce disaster damages in an environmentally-friendly manner in the shortest possible time. The terms including ‘environmentally-friendly’ and ‘shortest possible time’ refer to the environmental and social aspects of sustainability. This research proposes a stochastic multi-objective mixed-integer programming model to configure an SHL network during the response phase. Having compared to the research literature, this is the first study that considers economic, social, and environmental aspects of sustainability by incorporating relief cost, deprivation cost, and carbon emissions, respectively. Then, the improved multi-choice goal programming approach is applied to solve the proposed multi-objective model. To indicate the validity of the proposed model, an earthquake that occurred in a region of Kermanshah, Iran, in 2017 is investigated as a real case study. Finally, sensitivity analysis is performed and several managerial and theoretical insights are provided. The results show that exerting environmental issues in humanitarian logistics does not necessarily increase the relief costs, but can be in contrast with the social aspect. Furthermore, a minor increase in the budget of the preparedness phase drastically decreases the response costs.
Keywords: Humanitarian logistics; Deprivation cost; Sustainable disaster management; Stochastic multi-objective optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-021-04014-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:319:y:2022:i:1:d:10.1007_s10479-021-04014-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-021-04014-2
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().