Stratified importance sampling for a Bernoulli mixture model of portfolio credit risk
Sunggon Kim () and
Jisu Yu ()
Additional contact information
Sunggon Kim: University of Seoul
Jisu Yu: SK Materials
Annals of Operations Research, 2023, vol. 322, issue 2, No 10, 819-849
Abstract:
Abstract Bernoulli mixture model is a general framework by which most existing models of portfolio credit risk can be represented. In the model, the default probability of an obligor is determined by a set of latent factors. The model allows various types of joint default probability of obligors. For the model, we propose an importance sampling scheme to estimate the tail loss probability. We consider the case that there are several types of default events of obligors leading to large losses. In such a case, the optimal importance distribution leading to frequent outcomes of a typical default event of large loss is different from those of other typical default events. We stratify the sample space of defaults of obligors according to the defaults of some obligors with large exposures, and propose to sample from an importance distribution chosen optimally for each stratum. We show that the stratified importance sampling is more efficient than the importance sampling without stratification in terms of variance reduction under a condition. For the optimal choice of importance distribution for each stratum, we apply the cross entropy minimization method and the exponential twisting. For the case that the importance distribution of latent factors is confined to the family of multivariate normal mixtures, it is hard to find the optimal parameter which is the solution of a cross entropy minimization problem. We implement an EM-algorithm to solve the problem. Numerical results are given to compare the performance of the proposed scheme with the crude Monte Carlo simulation and the importance sampling without stratification.
Keywords: Credit risk; Benoulli mixture model; Stratified importance sampling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05174-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:322:y:2023:i:2:d:10.1007_s10479-023-05174-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-023-05174-z
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().