A framework for the estimation of treatment costs of cardiovascular conditions in the presence of disease transition
Mohit Goswami (),
Yash Daultani (),
Sanjoy Kumar Paul () and
Saurabh Pratap ()
Additional contact information
Mohit Goswami: Indian Institute of Management Raipur
Yash Daultani: Indian Institute of Management Lucknow
Sanjoy Kumar Paul: University of Technology Sydney
Saurabh Pratap: Indian Institute of Technology (BHU)
Annals of Operations Research, 2023, vol. 328, issue 1, No 17, 577-616
Abstract:
Abstract The current research aims to aid policymakers and healthcare service providers in estimating expected long-term costs of medical treatment, particularly for chronic conditions characterized by disease transition. The study comprised two phases (qualitative and quantitative), in which we developed linear optimization-based mathematical frameworks to ascertain the expected long-term treatment cost per patient considering the integration of various related dimensions such as the progression of the medical condition, the accuracy of medical treatment, treatment decisions at respective severity levels of the medical condition, and randomized/deterministic policies. At the qualitative research stage, we conducted the data collection and validation of various cogent hypotheses acting as inputs to the prescriptive modeling stage. We relied on data collected from 115 different cardio-vascular clinicians to understand the nuances of disease transition and related medical dimensions. The framework developed was implemented in the context of a multi-specialty hospital chain headquartered in the capital city of a state in Eastern India, the results of which have led to some interesting insights. For instance, at the prescriptive modeling stage, though one of our contributions related to the development of a novel medical decision-making framework, we illustrated that the randomized versus deterministic policy seemed more cost-competitive. We also identified that the expected treatment cost was most sensitive to variations in steady-state probability at the “major” as opposed to the “severe” stage of a medical condition, even though the steady-state probability of the “severe” state was less than that of the “major” state.
Keywords: Medical decision-making; Healthcare systems; Resource planning; Markovian analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04914-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04914-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04914-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().