EEG signal classification via pinball universum twin support vector machine
M. A. Ganaie (),
M. Tanveer () and
Jatin Jangir ()
Additional contact information
M. A. Ganaie: Indian Institute of Technology Indore
M. Tanveer: Indian Institute of Technology Indore
Jatin Jangir: Indian Institute of Technology Indore
Annals of Operations Research, 2023, vol. 328, issue 1, No 14, 492 pages
Abstract:
Abstract Electroencephalogram (EEG) have been widely used for the diagnosis of neurological diseases like epilepsy and sleep disorders. Support vector machines (SVMs) are widely used classifiers for the classification of EEG signals due to their better generalization performance. However, SVM suffers due to high computational complexity. To reduce the computations, twin support vector machines (TWSVM) solved smaller size quadratic optimization problems. To enhance the performance of the SVM and TWSVM models, prior information known as universum data has been incorporated in the universum SVM (USVM) and universum twin (UTSVM) models. Both SVM and UTSVM employ hinge loss which results in sensitivity to noise and instability. To overcome these issues and incorporate the prior information of the EEG signals, we propose a novel universum twin support vector machine with pinball loss function (Pin-UTSVM) for the classification of EEG signals. The proposed Pin-UTSVM is more stable for resampling and is noise insensitive. Furthermore, the computational complexity of proposed Pin-UTSVM model is similar to the standard UTSVM model. In the proposed approach, we used the interictal EEG signal as the universum data. Numerical experiments at varying level of noise show that the proposed Pin-UTSVM is more robust to noise compared to standard models. To show the efficiency of the proposed Pin-UTSVM model, we used multiple feature extraction techniques for the classification of the EEG signal. Experimental results reveal that the proposed Pin-UTSVM model is performing better compared to the existing models. Moreover, statistical tests show that the proposed Pin-UTSVM model is significantly better in comparison with the existing baseline models.
Keywords: Universum; Interictal; Support vector machine; Twin support vector machine; EEG signal classification; Pinball loss (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04922-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04922-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04922-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().