EconPapers    
Economics at your fingertips  
 

Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients

Sara Saadatmand (), Khodakaram Salimifard (), Reza Mohammadi (), Alex Kuiper (), Maryam Marzban () and Akram Farhadi ()
Additional contact information
Sara Saadatmand: Persian Gulf University
Khodakaram Salimifard: Persian Gulf University
Reza Mohammadi: University of Amsterdam
Alex Kuiper: University of Amsterdam
Maryam Marzban: Bushehr University of Medical Science
Akram Farhadi: Bushehr University of Medical Science

Annals of Operations Research, 2023, vol. 328, issue 1, No 30, 1043-1071

Abstract: Abstract The recent COVID-19 pandemic has affected health systems across the world. Especially, Intensive Care Units (ICUs) have played a pivotal role in the treatment of critically-ill patients. At the same time however, the increasing number of admissions due to the vast prevalence of the virus have caused several problems for ICU wards such as overburdening of staff and shortages of medical resources. These issues might have affected the quality of healthcare services provided directly impacting a patient’s survival. The objective of this research is to leverage Machine Learning (ML) on hospital data in order to support hospital managers and practitioners with the treatment of COVID-19 patients. This is accomplished by providing more detailed inference about a patient’s likelihood of ICU admission, mortality and in case of hospitalization the length of stay (LOS). In this pursuit, the outcome variables are in three separate models predicted by five different ML algorithms: eXtreme Gradient Boosting (XGB), K-Nearest Neighbor (KNN), Random Forest (RF), bagged-CART (b-CART), and LogitBoost (LB). With the exception of KNN, the studied models show good predictive capabilities when evaluating relevant accuracy scores, such as area under the curve. By implementing an ensemble stacking approach (either a Neural Net or a General Linear Model) on top of the aforementioned ML algorithms the performance is further boosted. Ultimately, for the prediction of admission to the ICU, the ensemble stacking via a Neural Net achieved the best result with an accuracy of over 95%. For mortality at the ICU, the vanilla XGB performed slightly better (1% difference with the meta-model). To predict large length of stays both ensemble stacking approaches yield comparable results. Besides it direct implications for managing COVID-19 patients, the approach presented serves as an example how data can be employed in future pandemics or crises.

Keywords: COVID-19 pandemic; ML in health systems; Supervised learning; Ensemble modeling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04984-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04984-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-022-04984-x

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04984-x