Chance-constrained stochastic assembly line balancing with branch, bound and remember algorithm
Zixiang Li (),
Celso Gustavo Stall Sikora () and
Ibrahim Kucukkoc ()
Additional contact information
Zixiang Li: Wuhan University of Science and Technology
Celso Gustavo Stall Sikora: University of Hamburg
Ibrahim Kucukkoc: Balikesir University
Annals of Operations Research, 2024, vol. 335, issue 1, No 19, 516 pages
Abstract:
Abstract Assembly lines are widely used mass production techniques applied in various industries from electronics to automotive and aerospace. A branch, bound, and remember (BBR) algorithm is presented in this research to tackle the chance-constrained stochastic assembly line balancing problem (ALBP). In this problem variation, the processing times are stochastic, while the cycle time must be respected for a given probability. The proposed BBR method stores all the searched partial solutions in memory and utilizes the cyclic best-first search strategy to quickly achieve high-quality complete solutions. Meanwhile, this study also develops several new lower bounds and dominance rules by taking the stochastic task times into account. To evaluate the performance of the developed method, a large set of 1614 instances is generated and solved. The performance of the BBR algorithm is compared with two mixed-integer programming models and twenty re-implemented heuristics and metaheuristics, including the well-known genetic algorithm, ant colony optimization algorithm and simulated annealing algorithm. The comparative study demonstrates that the mathematical models cannot achieve high-quality solutions when solving large-size instances, for which the BBR algorithm shows clear superiority over the mathematical models. The developed BBR outperforms all the compared heuristic and metaheuristic methods and is the new state-of-the-art methodology for the stochastic ALBP.
Keywords: Assembly line balancing; Stochastic assembly line; Branch and bound; Heuristic algorithms; Meta-heuristics; Chance-constraint (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05809-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05809-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-023-05809-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().