EconPapers    
Economics at your fingertips  
 

From regression models to machine learning approaches for long term Bitcoin price forecast

Andrea Caliciotti (), Marco Corazza () and Giovanni Fasano ()
Additional contact information
Andrea Caliciotti: University of Rome “La Sapienza”
Marco Corazza: Ca’ Foscari University of Venice
Giovanni Fasano: Ca’ Foscari University of Venice

Annals of Operations Research, 2024, vol. 336, issue 1, No 12, 359-381

Abstract: Abstract We carry on a long term analysis for Bitcoin price, which is currently among the most renowned crypto assets available on markets other than Forex. In the last decade Bitcoin has been under spotlights among traders all world wide, both because of its nature of pseudo–currency and for the high volatility its price has frequently experienced. Considering that Bitcoin price has earned over five orders of magnitude since 2009, the interest of investors has been increasingly motivated by the necessity of accurately predicting its value, not to mention that a comparative analysis with other assets as silver and gold has been under investigation, too. This paper reports two approaches for a long term Bitcoin price prediction. The first one follows more standard paradigms from regression and least squares frameworks. Our main contribution in this regard fosters conclusions which are able to justify the cyclic performance of Bitcoin price, in terms of its Stock–to–Flow. Our second approach is definitely novel in the literature, and indicates guidelines for long term forecasts of Bitcoin price based on Machine Learning (ML) methods, with a specific reference to Support Vector Machines (SVMs). Both these approaches are inherently data–driven, and the second one does not require any of the assumptions typically needed by solvers for classic regression problems.

Keywords: Bitcoin; Forecast; Least squares problems; Regression; Support vector machines; Bootstrap (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05444-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05444-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-023-05444-w

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05444-w