A global forecasting method of heterogeneous household short-term load based on pre-trained autoencoder and deep-LSTM model
Wenhui Zhao,
Tong Li,
Danyang Xu and
Zhaohua Wang ()
Additional contact information
Wenhui Zhao: Sichuan University
Tong Li: Beijing Institute of Technology
Danyang Xu: Beijing Institute of Technology
Zhaohua Wang: Beijing Institute of Technology
Annals of Operations Research, 2024, vol. 339, issue 1, No 10, 227-259
Abstract:
Abstract Short-term load forecasting (STLF) of heterogeneous multi-agents plays a significant role in smart grid. Faced with special difficulties of multi-agent STLF due to the high heterogeneity, uncertainty and volatility, traditional local methods usually make predictions based on load aggregation or clustering, the complexity of which will rise greatly with the increase of agent types. It has become more and more difficult for traditional methods to meet the STLF demand of smart grid. Meanwhile, global time series forecasting method emerges gradually in many fields, which can make predictions for many agents only by one model with much lower complexity. However, there is few researches on the multi-agent global STLF. This study proposes a global deep-Long Short-Term Memory (LSTM) STLF model based on a pretraining method. The model fully applies the information such as electricity consumption pattern, weather and calendar in a structural and orderly way. The empirical results show that our model can effectively predict the daily load of heterogeneous households, with prediction accuracies of 87.9–90.2% on the test set across various tasks. Compared with the base model, our model achieves an 8.7% higher accuracy with a much faster convergence speed. Furthermore, the fluctuations of accuracy on different tasks are within 2.3%, showing that our model is robust. The superiority of the global method is proved through the comparison with local method in the empirical results. This study is expected to make contribution to global STLF of heterogeneous households and providing experience for the global prediction of heterogeneous time series based on deep-LSTM and pretraining method.
Keywords: Short-term load forecasting; Deep learning; Global forecasting; Heterogeneous households; Pretraining; LSTM; Autoencoder (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-05070-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05070-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-05070-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().