EconPapers    
Economics at your fingertips  
 

Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network

Sangho Lee (), Jeongsub Choi () and Youngdoo Son ()
Additional contact information
Sangho Lee: Dongguk University – Seoul
Jeongsub Choi: West Virginia University
Youngdoo Son: Dongguk University – Seoul

Annals of Operations Research, 2024, vol. 339, issue 1, No 30, 813-833

Abstract: Abstract Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis.

Keywords: High-frequency time series; Visibility algorithms; Graph convolutional network; Deep learning; Fault diagnosis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-05071-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05071-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-022-05071-x

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05071-x