EconPapers    
Economics at your fingertips  
 

Root cause analysis of manufacturing variation from optical scanning data

Anh Tuan Bui ()
Additional contact information
Anh Tuan Bui: Virginia Commonwealth University

Annals of Operations Research, 2024, vol. 339, issue 1, No 5, 130 pages

Abstract: Abstract Identifying the root causes of part-to-part variation is a central problem in most six-sigma programs, especially of modern manufacturing processes. This is challenging as the sources and patterns of the variation are often unknown or previously unidentified. A small literature aims to address this problem by discovering unknown, previously unidentified variation sources, in a manner that helps understand their nature, from only a sample of measurement data. However, the common solution of this literature is unideal for this objective in terms of both methodology and metrology aspects. This paper proposes a convolutional generative modeling framework for optical scanning data to address this limitation. The proposed approach can correctly discover the true variation sources and visualize their individual patterns in two manufacturing examples, without any prior knowledge of the variation. The approach also outperforms state-of-the-art methods in these examples.

Keywords: Adversarial autoencoder; Convolutional neural networks; Generative adversarial networks (GAN); Phase I analysis; Statistical process control; Variation reduction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-05077-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05077-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-022-05077-5

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05077-5