EconPapers    
Economics at your fingertips  
 

Intermittent demand forecasting with transformer neural networks

G. Peter Zhang, Yusen Xia () and Maohua Xie
Additional contact information
G. Peter Zhang: Georgia State University
Yusen Xia: Georgia State University
Maohua Xie: Georgia State University

Annals of Operations Research, 2024, vol. 339, issue 1, No 38, 1072 pages

Abstract: Abstract Intermittent demand forecasting is an important yet challenging task in many organizations. While prior research has been focused on traditional methods such as Croston’s method and its variants, limited research has been conducted using advanced machine learning or deep learning methods. In this study, we introduce Transformer, a recently developed deep learning approach, to forecast intermittent demand. Its effectiveness is empirically tested with a dataset of 925 intermittent demand items from an airline spare parts provider and compared with that of two traditional methods such as Croston’s and the Syntetos–Boylan approximation as well as several popular neural network architectures including feedforward neural networks, recurrent neural networks, and long short-term memory. Our results based on six different forecasting performance measures show that Transformer performs very well against other methods in a variety of settings. We also examine how data sparsity impacts model performance and find that different models perform similarly when sparsity is low. Although the performance of all models generally gets worse as the sparsity level increases, the advantage of Transformer over other models increases with sparsity.

Keywords: Intermittent demand; Forecasting; Neural networks; Transformer; Deep learning methods (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05447-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05447-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-023-05447-7

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05447-7