EconPapers    
Economics at your fingertips  
 

High-dimensional stochastic control models for newsvendor problems and deep learning resolution

Jingtang Ma () and Shan Yang ()
Additional contact information
Jingtang Ma: Southwestern University of Finance and Economics
Shan Yang: University of New South Wales

Annals of Operations Research, 2024, vol. 339, issue 1, No 29, 789-811

Abstract: Abstract This paper studies continuous-time models for newsvendor problems with dynamic replenishment, financial hedging and Stackelberg competition. These factors are considered simultaneously and the high-dimensional stochastic control models are established. High-dimensional Hamilton-Jacobi-Bellman (HJB) equations are derived for the value functions. To circumvent the curse of dimensionality, a deep learning algorithm is proposed to solve the HJB equations. A projection is introduced in the algorithm to avoid the gradient explosion during the training phase. The deep learning algorithm is implemented for HJB equations derived from the newsvendor models with dimensions up to six. Numerical outcomes validate the algorithm’s accuracy and demonstrate that the high-dimensional stochastic control models can successfully mitigate the risk.

Keywords: Supply chain management; Newsvendor models; Stochastic control; Dynamic replenishment; Financial hedging; Stackelberg game; Deep learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-024-05872-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-024-05872-2

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-024-05872-2

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-024-05872-2