The third party logistics provider freight management problem: a framework and deep reinforcement learning approach
Amin Abbasi-Pooya () and
Michael T. Lash ()
Additional contact information
Amin Abbasi-Pooya: University of Kansas
Michael T. Lash: University of Kansas
Annals of Operations Research, 2024, vol. 339, issue 1, No 36, 965-1024
Abstract:
Abstract In many large manufacturing companies, freight management is handled by a third-party logistics (3PL) provider, thus allowing manufacturers and their suppliers to focus on the production of goods rather than managing their delivery. Provided their pivotal supply chain role, in this work we propose a general framework for what we term as “the 3PL freight management problem” (3PLFMP). Our framework identifies three primary activities involved in 3PL freight management: the assignment of orders to a fleet of vehicles, efficient routing of the fleet, and packing the assigned orders in vehicles. Furthermore, we provide a specific instantiation of the 3PLFMP that considers direct vs. consolidated shipping strategies, one dimensional packing constraints, and a fixed vehicle routing schedule. We solve this instantiated problem using several Reinforcement Learning (RL) methods, including Q-learning, Double Q-learning, SARSA, Deep Q-learning, and Double Deep Q-learning, comparing against two benchmark methods, a simulated annealing heuristic and a variable neighborhood descent algorithm. We evaluate the performance of these methods on two datasets. One is fully simulated and based on past work, while another is semi-simulated using real-world automobile manufacturers and part supplier locations, and is of our own design. We find that RL methods vastly outperform the benchmark heuristic methods on both datasets, thus establishing the superiority of RL methods in solving this highly complicated and stochastic problem.
Keywords: Third-party logistics provider; Freight management; Reinforcement learning; Deep reinforcement learning; Order consolidation; Heuristics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-024-05876-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-024-05876-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-024-05876-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().