Value of intermediate imaging in adaptive robust radiotherapy planning to manage radioresistance
Arkajyoti Roy (),
Shaunak S. Dabadghao and
Ahmadreza Marandi
Additional contact information
Arkajyoti Roy: University of Texas at San Antonio
Shaunak S. Dabadghao: Eindhoven University of Technology
Ahmadreza Marandi: Eindhoven University of Technology
Annals of Operations Research, 2024, vol. 339, issue 3, No 9, 1307-1328
Abstract:
Abstract In radiotherapy, uncertainties in tumor radioresistance and its progression can degrade the efficacy of deterministic treatments. While a robust methodology can overcome this, it often produces overly conservative or suboptimal decisions, especially when there are changes in time. We aim to develop an adaptive radiotherapy planning framework that can reduce over-conservatism yet remain robust to the uncertainties in radioresistance. Specifically, intermediate imaging is used to update the uncertainty at each stage and curb over-conservatism. While additional imaging reduces uncertainty, it accrues costs such as extra radiation to organs, which deters continuous imaging. We probe this trade-off in uncertainty and cost of observation by computing and comparing results from two-stage, three-stage, and four-stage robust models. The three robust models are also compared to two currently practiced deterministic methods, one that does not account for radioresistance and one that assumes a constant radioresistance. All five models are evaluated on a clinical prostate case. The three robust models improve control of the tumor compared to the deterministic model ignoring radioresistance, at comparable radiation dose to critical organs. The robust models also reduce tumor overdose and organ dose compared to the deterministic model assuming a constant radioresistance. Increasing the number of intermediate imaging leads to further improvements, especially on tumor dose criteria under best-case and nominal scenarios. Under the worst-case, intermediate images provide no additional benefit as robust optimization inherently protects against the worst-case. The proposed method is generic and can include additional sources of uncertainties that reduce the effect of radiation.
Keywords: Adaptive robust optimization; Time-dependent uncertainty; Radioresistance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04699-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-022-04699-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04699-z
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().