Extremal properties of evolving networks: local dependence and heavy tails
Natalia Markovich ()
Additional contact information
Natalia Markovich: V.A. Trapeznikov Institute of Control Sciences Russian Academy of Sciences
Annals of Operations Research, 2024, vol. 339, issue 3, No 26, 1839-1870
Abstract:
Abstract A network evolution with predicted tail and extremal indices of PageRank and the Max-Linear Model used as node influence indices in random graphs is considered. The tail index shows a heaviness of the distribution tail. The extremal index is a measure of clustering (or local dependence) of the stochastic process. The cluster implies a set of consecutive exceedances of the process over a sufficiently high threshold. Our recent results concerning sums and maxima of non-stationary random length sequences of regularly varying random variables are extended to random graphs. Starting with a set of connected stationary seed communities as a hot spot and ranking them with regard to their tail indices, the tail and extremal indices of new nodes that are appended to the network may be determined. This procedure allows us to predict a temporal network evolution in terms of tail and extremal indices. The extremal index determines limiting distributions of a maximum of the PageRank and the Max-Linear Model of newly attached nodes. The exposition is provided by algorithms and examples. To validate our theoretical results, our simulation and real data study concerning a linear preferential attachment as a tool for network growth are provided.
Keywords: Network evolution; Tail index; Extremal index; PageRank; Max-linear model; Preferential attachment (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05175-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-023-05175-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-023-05175-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().