Stochastic debugging based reliability growth models for Open Source Software project
Shakshi Singhal (),
P. K. Kapur (),
Vivek Kumar () and
Saurabh Panwar ()
Additional contact information
Shakshi Singhal: Fortune Institute of International Business (FIIB)
P. K. Kapur: Amity University, Uttar Pradesh
Vivek Kumar: University of Delhi
Saurabh Panwar: University of Delhi
Annals of Operations Research, 2024, vol. 340, issue 1, No 23, 569 pages
Abstract:
Abstract Open Source Software (OSS) is one of the most trusted technologies for implementing industry 4.0 solutions. The study aims to assist a community of OSS developers in quantifying the product’s reliability. This research proposes reliability growth models for OSS by incorporating dynamicity in the debugging process. For this, stochastic differential equation-based analytical models are developed to represent the instantaneous rate of error generation. The fault introduction rate is modeled using exponential and Erlang distribution functions. The empirical applications of the proposed methodology are verified using the real-life failure data of the Open Source Software projects, GNU Network Object Model Environment, and Eclipse. A soft computing technique, Genetic Algorithm, is applied to estimate model parameters. Cross-validation is also performed to examine the forecasting efficacy of the model. The predictive power of the developed models is compared with various benchmark studies. The data analysis is conducted using the R statistical computing software. The results demonstrate the proposed models’ efficacy in parameter estimation and predictive performance. In addition, the optimal release time policy based on the proposed mathematical models is presented by formulating the optimization model that intends to minimize the total cost of software development under reliability constraints. The numerical illustration and sensitivity analysis exhibit the proposed problem's practical significance. The findings of the numerical analysis exemplify the proposed study's capability of decision-making under uncertainty.
Keywords: Software reliability growth models; Imperfect debugging; S-shaped bug introduction rate; Genetic algorithm; Open Source Software; Uncertainty (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05240-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:340:y:2024:i:1:d:10.1007_s10479-023-05240-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-023-05240-6
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().