Data-driven reliability and resilience measure of transportation systems considering disaster levels
Hongyan Dui (),
Kaixin Liu and
Shaomin Wu
Additional contact information
Hongyan Dui: Zhengzhou University
Kaixin Liu: Zhengzhou University
Shaomin Wu: University of Kent
Annals of Operations Research, 2024, vol. 340, issue 1, No 11, 217-243
Abstract:
Abstract With the development of economic globalization and increasing international trade, the maritime transportation system (MTS) is becoming more and more complex. A failure of any supply line in the MTS can seriously affect the operation of the system. Resilience describes the ability of a system to withstand or recover from a disaster and is therefore an important method of disaster management in MTS. This paper analyzes the impact of disasters on MTS, using the data of Suez Canal "Century of Congestion" as an example. In practice, the severity of a disaster is dynamic. This paper categorizes disasters into different levels, which are then modelled by the Markov chain. The concept of a repair line set is proposed and is determined with the aim to minimize the total loss and maximize the resilience increment of the line to the system. The resilience measure of MTS is defined to determine the repair line sequence in the repair line set. Finally, a maritime transportation system network from the Far East to the Mediterranean Sea is used to validate the applicability of the proposed method.
Keywords: Reliability; Resilience; Markov process; Importance measure; Repair analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05301-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:340:y:2024:i:1:d:10.1007_s10479-023-05301-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-023-05301-w
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().