A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases
Kazim Topuz (),
Behrooz Davazdahemami () and
Dursun Delen ()
Additional contact information
Kazim Topuz: The University of Tulsa
Behrooz Davazdahemami: University of Wisconsin-Whitewater
Dursun Delen: Oklahoma State University
Annals of Operations Research, 2024, vol. 341, issue 1, No 26, 673-697
Abstract:
Abstract During a pandemic, medical specialists have substantial challenges in discovering and validating new disease risk factors and designing effective treatment strategies. Traditionally, this approach entails several clinical studies and trials that might last several years, during which strict preventive measures are enforced to manage the outbreak and limit the death toll. Advanced data analytics technologies, on the other hand, could be utilized to monitor and expedite the procedure. This research integrates evolutionary search algorithms, Bayesian belief networks, and innovative interpretation techniques to provide a comprehensive exploratory–descriptive–explanatory machine learning methodology to assist clinical decision-makers in responding promptly to pandemic scenarios. The proposed approach is illustrated through a case study in which the survival of COVID-19 patients is determined using inpatient and emergency department (ED) encounters from a real-world electronic health record database. Following an exploratory phase in which genetic algorithms are used to identify a set of the most critical chronic risk factors and their validation using descriptive tools based on the concept of Bayesian Belief Nets, the framework develops and trains a probabilistic graphical model to explain and predict patient survival (with an AUC of 0.92). Finally, a publicly available online, probabilistic decision support inference simulator was constructed to facilitate what-if analysis and aid general users and healthcare professionals in interpreting model findings. The results widely corroborate intensive and expensive clinical trial research assessments.
Keywords: Pandemic; Risk assessment; Bayesian network; Explainable machine learning; Comorbidity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-023-05377-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05377-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-023-05377-4
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().