EconPapers    
Economics at your fingertips  
 

Efficient neighborhood evaluation for the maximally diverse grouping problem

Arne Schulz ()
Additional contact information
Arne Schulz: Universität Hamburg

Annals of Operations Research, 2024, vol. 341, issue 2, No 19, 1247-1265

Abstract: Abstract The Maximally Diverse Grouping Problem is one of the well-known combinatorial optimization problems with applications in the assignment of students to groups or courses. Due to its NP-hardness several (meta)heuristic solution approaches have been presented in the literature. Most of them include the insertion of an item of one group into another group and the swap of two items currently assigned to different groups as neighborhoods. The paper presents a new efficient implementation for both neighborhoods and compares it with the standard implementation, in which all inserts/swaps are evaluated, as well as the neighborhood decomposition approach. The results show that the newly presented approach is clearly superior for larger instances allowing for up to 160% more iterations in comparison to the standard implementation and up to 76% more iterations in comparison to the neighborhood decomposition approach. Moreover, the results can also be used for (meta)heuristic algorithms for other grouping or clustering problems.

Keywords: Combinatorial optimization; Grouping; Local search; Computational efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-024-06217-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06217-9

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-024-06217-9

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06217-9