EconPapers    
Economics at your fingertips  
 

Dynamic asset allocation with asset-specific regime forecasts

Yizhan Shu (), Chenyu Yu () and John M. Mulvey ()
Additional contact information
Yizhan Shu: Princeton University
Chenyu Yu: Princeton University
John M. Mulvey: Princeton University

Annals of Operations Research, 2025, vol. 346, issue 1, No 18, 285-318

Abstract: Abstract This article introduces a novel hybrid regime identification-forecasting framework designed to enhance multi-asset portfolio construction by integrating asset-specific regime forecasts. Unlike traditional approaches that focus on broad economic regimes affecting the entire asset universe, our framework leverages both unsupervised and supervised learning to generate tailored regime forecasts for individual assets. Initially, we use the statistical jump model, a robust unsupervised regime identification model, to derive regime labels for historical periods, classifying them into bullish or bearish states based on features extracted from an asset return series. Following this, a supervised gradient-boosted decision tree classifier is trained to predict these regimes using a combination of asset-specific return features and cross-asset macro-features. We apply this framework individually to each asset in our universe. Subsequently, return and risk forecasts which incorporate these regime predictions are input into Markowitz mean-variance optimization to determine optimal asset allocation weights. We demonstrate the efficacy of our approach through an empirical study on a multi-asset portfolio comprising twelve risky assets, including global equity, bond, real estate, and commodity indexes spanning from 1991 to 2023. The results consistently show outperformance across various portfolio models, including minimum-variance, mean-variance, and naive-diversified portfolios, highlighting the advantages of integrating asset-specific regime forecasts into dynamic asset allocation.

Keywords: Markowitz; Asset allocation; Portfolio optimization; Financial market regimes; Regime identification; Regime forecasting; Statistical jump models; Mean-variance (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-024-06266-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06266-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-024-06266-0

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06266-0