Short-term interval-valued load forecasting with a combined strategy of iHW and multioutput machine learning
Feng Gao,
Jie Song and
Xueyan Shao ()
Additional contact information
Feng Gao: Peking University
Jie Song: Peking University
Xueyan Shao: Chinese Academy of Sciences
Annals of Operations Research, 2025, vol. 346, issue 3, No 3, 2009-2033
Abstract:
Abstract Interval-valued load forecasting is an important risk management tool for the utility companies and can provide more comprehensive and richer information to assist in decision-making. However, the existing literature mainly focused on point-valued load forecasting, neglecting the significance of interval-valued load forecasting. In this paper, we propose a combined framework based on interval Holt-Winters and multioutput machine leaning method to predict daily interval-valued load. Firstly, we improve the traditional Holt-Winters and propose interval Holt-Winters that takes account of the seasonal characteristics of daily load. Secondly, interval Holt-Winters is applied to predict daily interval-valued load series and obtain the forecasting results and residual series. Thirdly, multioutput machine learning models including multioutput support vector regression, interval multilayer perceptron and interval long short-term memory are employed to predict residual series and obtain the forecasting results of residual series, respectively. Finally, the final forecasting results of the daily interval-valued load are obtained by summing the forecasting results of interval Holt-Winters and residual series. Empirical results show that the proposed combined interval model outperforms the corresponding single interval model and has excellent robustness. Besides, compared with point forecasting models, the interval models have better performance.
Keywords: Interval-valued load forecasting; Interval Holt-Winters; Multioutput machine learning models (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-024-06446-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:346:y:2025:i:3:d:10.1007_s10479-024-06446-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-024-06446-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().