Fast and reliable uncertainty quantification with neural network ensembles for industrial image classification
Arthur Thuy () and
Dries F. Benoit ()
Additional contact information
Arthur Thuy: Ghent University
Dries F. Benoit: Ghent University
Annals of Operations Research, 2025, vol. 353, issue 2, No 4, 517-543
Abstract:
Abstract Image classification with neural networks (NNs) is widely used in industrial processes, situations where the model likely encounters unknown objects during deployment, i.e., out-of-distribution (OOD) data. Worryingly, NNs tend to make confident yet incorrect predictions when confronted with OOD data. To increase the models’ reliability, they should quantify the uncertainty in their own predictions, communicating when the output should (not) be trusted. Deep ensembles, composed of multiple independent NNs, have been shown to perform strongly but are computationally expensive. Recent research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study investigates the predictive and uncertainty performance of efficient NN ensembles in the context of image classification for industrial processes. It is the first to provide a comprehensive comparison and it proposes a novel Diversity Quality metric to quantify the ensembles’ performance on the in-distribution and OOD sets in one single metric. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It matches the deep ensemble in both uncertainty and accuracy while exhibiting considerable savings in training time, test time, and memory storage.
Keywords: Neural network ensembles; Computational efficiency; Uncertainty quantification; Out-of-distribution data; Manufacturing (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-024-06440-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:353:y:2025:i:2:d:10.1007_s10479-024-06440-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-024-06440-4
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().