Optimal allocation of area in hierarchical road networks
Masashi Miyagawa ()
The Annals of Regional Science, 2014, vol. 53, issue 2, 617-630
Abstract:
This paper deals with the hierarchical road network design using a continuous model. The model is based on a grid road network where roads are classified into three types: access roads, minor arterial roads, and major arterial roads. Using a continuous approximation in which the distance is measured as the rectilinear distance, we obtain a simple approximation for the total travel time. We then find the optimal allocation of area taken up by roads at each level of the hierarchy so as to minimize the sum of the travel and construction costs. The result demonstrates how the total traffic volume, the traffic composition, and the unit construction cost affect the optimal road area. The optimal area of major arterial roads increases with the total traffic volume and the proportions of inward, outward, and through traffic and decreases with the unit construction cost. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: R41; R53; C61 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00168-014-0635-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:anresc:v:53:y:2014:i:2:p:617-630
Ordering information: This journal article can be ordered from
http://link.springer.com/journal/168
DOI: 10.1007/s00168-014-0635-z
Access Statistics for this article
The Annals of Regional Science is currently edited by Martin Andersson, E. Kim and Janet E. Kohlhase
More articles in The Annals of Regional Science from Springer, Western Regional Science Association Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().