A comparison of vector autoregressive forecasting performance: spatial versus non-spatial Bayesian priors
James LeSage and
Bryce Cashell
The Annals of Regional Science, 2015, vol. 54, issue 2, 533-560
Abstract:
Forecasting performance of spatial versus non-spatial Bayesian priors applied to a large vector autoregressive model that includes the 48 lower US states plus and the District of Columbia is explored. Accuracy of one- to six-quarter-ahead personal income forecasts is compared for a model based on the Minnesota prior used in macroeconomic forecasting and a spatial prior proposed by Krivelyova and LeSage (J Reg Sci 39(2):297–317, 1999 ). While the Minnesota prior emphasizes time dependence taking the form of a random walk, the spatial prior relies on past values of neighboring state income growth rates while ignoring own-state past income growth. Our findings indicate that forecast accuracy for longer future time horizons is improved by the spatial prior, while that for shorter horizons is better for the non-spatial prior. This motivated a hybrid approach that combines both spatial and time dependence in the prior restrictions placed on the model parameters. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: C11; C22; R11 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00168-015-0665-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:anresc:v:54:y:2015:i:2:p:533-560
Ordering information: This journal article can be ordered from
http://link.springer.com/journal/168
DOI: 10.1007/s00168-015-0665-1
Access Statistics for this article
The Annals of Regional Science is currently edited by Martin Andersson, E. Kim and Janet E. Kohlhase
More articles in The Annals of Regional Science from Springer, Western Regional Science Association Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().