EconPapers    
Economics at your fingertips  
 

Spatial lag dependence in the presence of missing observations

Takahisa Yokoi ()
Additional contact information
Takahisa Yokoi: Tohoku University

The Annals of Regional Science, 2018, vol. 60, issue 1, No 2, 25-40

Abstract: Abstract We explore the estimation effectiveness of spatial lag models in the presence of missing observations. Spatial lag models are used to measure interdependency between dependent variables. If there are no missing data, it is easy to interpret this spatial autocorrelation process. Very sparsely sampled data are sometimes used in empirical studies. For such data, we observe only a small part of a population containing possible mutual dependencies. Simulation studies based on artificial data confirm the relation between the sampling rate and selection ratio of spatial and non-spatial models. Our findings include the following: (1) Negative spatial autocorrelation of the data-generating process (DGP) may not be observed. (2) Positive spatial autocorrelation of the DGP may be observed, but it is downward-biased. (3) We obtain less-biased estimates if we use a non-row-standardized weight matrix. (4) Non-spatial models tend to be selected in preference to the correct model, the spatial lag model. (5) Estimates of regression coefficients remain almost unbiased.

JEL-codes: C13 C21 C51 C52 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s00168-015-0737-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:anresc:v:60:y:2018:i:1:d:10.1007_s00168-015-0737-2

Ordering information: This journal article can be ordered from
http://link.springer.com/journal/168

DOI: 10.1007/s00168-015-0737-2

Access Statistics for this article

The Annals of Regional Science is currently edited by Martin Andersson, E. Kim and Janet E. Kohlhase

More articles in The Annals of Regional Science from Springer, Western Regional Science Association Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:anresc:v:60:y:2018:i:1:d:10.1007_s00168-015-0737-2