Forecasting of Wind Speed by Using Three Different Techniques of Prediction Models
Manoj Verma () and
Harish Kumar Ghritlahre
Additional contact information
Manoj Verma: Chhattisgarh Swami Vivekanand Technical University (CSVTU)
Harish Kumar Ghritlahre: Chhattisgarh Swami Vivekanand Technical University (CSVTU)
Annals of Data Science, 2023, vol. 10, issue 3, No 6, 679-711
Abstract:
Abstract Wind energy plays a major role in meeting the world’s growing power demand, due to which wind speed forecasting is essential for power system management, energy trading and maintaining the balance between consumption and generation for a stable electricity market. In this article, three different types of predicting techniques have been implemented for estimating wind speed by means of different meteorological parameters. Group method of data handling (GMDH), multi linear regression (MLR) and artificial neural network (ANN) models have been developed. For these models, data sets of 05 years (12 datasets from each year) were collected from the National Renewable Energy Laboratory (NREL). Five different types of input variables, which are ambient temperature (Ta), atmospheric pressure (Pr), wind direction (WD), relative humidity (RH) and precipitation (Pc) were selected as independent variables in all models. The collected wind speed (Wv) is selected as output or dependent variable. In this study, 48 sets of data were picked for training process and 12 datasets were selected for testing. The performances of models were examined using statistical parameters such as RMSE, MAPE and R2. MLR, GMDH and ANN techniques accurately performed with values of correlation coefficient (R) being obtained as 0.90552, 0.95542 and 0.97617 respectively. Comparative study of all models reveals that out of these three techniques, ANN performs the best. In the ANN model, the values of RMSE, MAE and R2 obtained were 0.17476, 0.12984 and 0.95210 respectively, which are optimal results when compared to those of other models. After ANN, GMDH performed better than MLR. Above analysis reveals that the wind speed was predicted with the highest accuracy by the neural technique.
Keywords: Group method of data handling; Multi linear regression; Artificial neural network; Wind speed; Wind energy; Prediction model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40745-021-00333-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:10:y:2023:i:3:d:10.1007_s40745-021-00333-0
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-021-00333-0
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().