EconPapers    
Economics at your fingertips  
 

A Framework for Industrial Inspection System using Deep Learning

Monowar Wadud Hridoy, Mohammad Mizanur Rahman and Saadman Sakib ()
Additional contact information
Monowar Wadud Hridoy: Chittagong University of Engineering & Technology
Mohammad Mizanur Rahman: Chittagong University of Engineering & Technology
Saadman Sakib: Chittagong University of Engineering & Technology

Annals of Data Science, 2024, vol. 11, issue 2, No 3, 445-478

Abstract: Abstract Industrial Inspection systems are an essential part of Industry 4.0. An automated inspection system can significantly improve product quality and reduce human labor while making their life easier. However, a deep learning-based camera inspection system requires a large amount of data to classify the defective products accurately. In this paper, a framework is proposed for an industrial inspection system with the help of deep learning. Additionally, A new dataset of hex-nut products is proposed containing 4000 images, i.e., 2000 defective and 2000 non-defective. Moreover, different CNN architectures, i.e., Custom CNN, Inception ResNet v2, Xception, ResNet 101 v2, ResNet 152 v2, are experimented with the concept of transfer learning on the new hex-nut dataset. Fine-tuning the CNN architectures is performed by freezing the last 14 layers, which provided the optimal architecture, i.e., Xception (last 14 layers trainable, excluding the fully connected layer). The proposed framework can efficiently separate the defective products from the non-defective products with 100% accuracy on the hex nut dataset. Furthermore, the proposed optimal Xception architecture has experimented on a publicly available casting material dataset which produced 99.72% accuracy, outperforming existing methods.

Keywords: Industry 4.0; Inspection System; Deep Learning; Hex-nut Dataset; Xcecption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-022-00437-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-022-00437-1

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-022-00437-1

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-022-00437-1