Research on Wind Turbine Fault Diagnosis Method Realized by Vibration Monitoring
Xiuhua Jiang ()
Additional contact information
Xiuhua Jiang: Baoding Electric Power Vocational and Technical College
Annals of Data Science, 2024, vol. 11, issue 2, No 15, 749-758
Abstract:
Abstract Wind energy is one of the fast evolving renewable energy sources that has seen widespread application. Therefore, research on its carrier, the wind turbine, is growing, and the majority of them concentrate on the diagnosis of wind turbine faults. In this paper, the vibration signals collected in the time domain by vibration monitoring were analyzed, and the fault characteristic parameters were identified. These parameters were then inputted into a genetic algorithm back-propagation neural network (GA-BPNN) for wind turbine fault diagnosis. It was found that the presence of defects in the wind turbine depended on the effective value, peak value, and kurtosis of the vibration signal. The overall recognition accuracy of the GA-BPNN was 94.89%, which was much higher than that of the support vector machine (88.7%) and random forest (88.35%). Therefore, it is feasible and highly accurate to extract fault characteristic parameters through vibration monitoring and input them into a GA-BPNN for wind turbine fault diagnosis.
Keywords: Vibration monitoring; Wind turbine; Fault diagnosis; Back-propagation neural network; Genetic algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40745-023-00497-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-023-00497-x
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-023-00497-x
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().