EconPapers    
Economics at your fingertips  
 

Research on Intelligent Courses in English Education based on Neural Networks

Huimin Yao () and Haiyan Wang
Additional contact information
Huimin Yao: Jinzhong Normal Junior College
Haiyan Wang: Jinzhong Normal Junior College

Annals of Data Science, 2024, vol. 11, issue 3, No 16, 1095-1107

Abstract: Abstract Accurately predicting students’ performance plays a crucial role in achieving the intellectualization of courses. This paper studied intelligent courses in English education based on neural networks and designed a firefly algorithm-back propagation neural network (FA-BPNN) method. The correlation between various features and final grades was calculated using the students’ online learning data. Features with higher correlation were selected as the input for the FA-BPNN algorithm to estimate the final score that students achieved in the “College English” course. It was found that the training time of the FA-BPNN algorithm was 3.42 s, the root-mean-square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) values of the FA-BPNN algorithm were 0.986, 0.622, and 0.205, respectively. They were lower than those of the BPNN, genetic algorithm (GA)-BPNN, and particle swarm optimization (PSO)-BPNN algorithms, as well as the adaptive neuro-fuzzy inference system approach. The results indicated the efficacy of the FA for optimizing the parameters of the BPNN algorithm. The comparison between the predicted results and actual values suggested that the average error of the FA-BPNN algorithm was only 0.5, which was the smallest. The experimental results demonstrate the reliability of the FA-BPNN algorithm for performance prediction and its practical application feasibility.

Keywords: Neural network; English education; Intelligent course; Firefly algorithm (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-024-00528-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:11:y:2024:i:3:d:10.1007_s40745-024-00528-1

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-024-00528-1

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:aodasc:v:11:y:2024:i:3:d:10.1007_s40745-024-00528-1