EconPapers    
Economics at your fingertips  
 

LADDERS: Log Based Anomaly Detection and Diagnosis for Enterprise Systems

Sakib A. Mondal (), Prashanth Rv (), Sagar Rao () and Arun Menon ()
Additional contact information
Sakib A. Mondal: Walmart
Prashanth Rv: Walmart
Sagar Rao: Walmart
Arun Menon: Walmart

Annals of Data Science, 2024, vol. 11, issue 4, No 3, 1165-1183

Abstract: Abstract Enterprise software can fail due to not only malfunction of application servers, but also due to performance degradation or non-availability of other servers or middle layers. Consequently, valuable time and resources are wasted in trying to identify the root cause of software failures. To address this, we have developed a framework called LADDERS. In LADDERS, anomalous incidents are detected from log events generated by various systems and KPIs (Key Performance Indicators) through an ensemble of supervised and unsupervised models. Without transaction identifiers, it is not possible to relate various events from different systems. LADDERS implements Recursive Parallel Causal Discovery (RPCD) to establish causal relationships among log events. The framework builds coresets using BICO to manage high volumes of log data during training and inferencing. An anomaly can cause a number of anomalies throughout the systems. LADDERS makes use of RPCD again to discover causal relationships among these anomalous events. Probable root causes are revealed from the causal graph and anomaly rating of events using a k-shortest path algorithm. We evaluated LADDERS using live logs from an enterprise system. The results demonstrate its effectiveness and efficiency for anomaly detection.

Keywords: Anomaly detection; Causal discovery; Log analysis; Software systems (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-023-00471-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-023-00471-7

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-023-00471-7

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aodasc:v:11:y:2024:i:4:d:10.1007_s40745-023-00471-7