EconPapers    
Economics at your fingertips  
 

Farm-Level Smart Crop Recommendation Framework Using Machine Learning

Amit Bhola () and Prabhat Kumar ()
Additional contact information
Amit Bhola: National Institute of Technology Patna
Prabhat Kumar: National Institute of Technology Patna

Annals of Data Science, 2025, vol. 12, issue 1, No 5, 117-140

Abstract: Abstract Agriculture is the primary source of food, fuel, and raw materials and is vital to any country’s economy. Farmers, the backbone of agriculture, primarily rely on instinct to determine what crops to plant in any given season. They are comfortable following customary farming practices and standards and are oblivious to the fact that crop yield is highly dependent on current environmental and soil conditions. Crop recommendations involve multifaceted factors such as weather, soil quality, crop production, market demand, and prices, making it crucial for farmers to make well-informed decisions. An improper or imprudent crop recommendation can affect them, their families, and the entire agricultural sector. Modern technologies like artificial intelligence, machine learning, and data science have emerged as efficient solutions to combat issues like declining crop production and lower profits. This research proposes a Smart Crop Recommendation framework that leverages machine learning to empower farmers to make informed decisions about optimal crop selection. The framework consists of two phases: crop filtration and yield prediction. Crops are filtered in the first phase using an artificial neural network based on local input parameters. The second phase estimates yield for filtered crops, considering the season, farm area, and location data. The final recommendation provides farmers with crops aimed at maximizing profit. The remarkable 99.10% accuracy of the framework is demonstrated through experimentation using artificial neural networks and the 0.99 $$\text {R}^{\text {2}}$$ R 2 error metric for the random forest. The uniqueness of this framework lies in its distinctive focus on the farm level and its consideration of the challenges and various agricultural features that change over time. The experimental results affirm the effectiveness of the framework, and its lightweight nature enhances its practicality, making it an efficient real-time recommendation solution.

Keywords: Digital agriculture; Deep learning; Artificial intelligence; Yield prediction; Smart farming (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-024-00534-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00534-3

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-024-00534-3

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00534-3