An Innovative Technique for Generating Probability Distributions: A Study on Lomax Distribution with Applications in Medical and Engineering Fields
Shamshad Ur Rasool (),
M. A. Lone () and
S. P. Ahmad ()
Additional contact information
Shamshad Ur Rasool: University of Kashmir
M. A. Lone: University of Kashmir
S. P. Ahmad: University of Kashmir
Annals of Data Science, 2025, vol. 12, issue 2, No 1, 439-455
Abstract:
Abstract In this paper, we propose and investigate a novel approach for generating the probability distributions. The novel method is known as the SMP transformation technique. By using the SMP Transformation technique, we have developed a new model of the Lomax distribution known as SMP Lomax (SMPL) distribution. The SMPL distribution, which is comparable to the Sine Power Lomax distribution, Power Length BiasedWeighted Lomax Distribution, Exponentiated Lomax and Lomax distribution have the desirable attribute of allowing the superiority and the flexibility over other well known existing models. Furthermore, the research article examines various aspects related to the SMPL , including the statistical properties along with the maximum likelihood estimation procedure to estimate the parameters. An extensive simulation study is carried out to illustrate the behaviour of MLEs on the basis of Mean Square Errors. To evaluate the effectiveness and flexibility of the proposed distribution, two real-life data sets are employed and it is observed that SMPL outperforms base model of Lomax distribution as well as other mentioned competing models based on Akaike Information Criterion, Akaike Information criterion Corrected, Hannan–Quinn information criterion and other goodness of fit measures.
Keywords: SMP transformation; Lomax distribution; Order statistics; Maximum likelihood estimation; Moments; Entropy (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40745-024-00515-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:12:y:2025:i:2:d:10.1007_s40745-024-00515-6
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-024-00515-6
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().