Drinkers Voice Recognition Intelligent System: An Ensemble Stacking Machine Learning Approach
Panduranga Vital Terlapu ()
Additional contact information
Panduranga Vital Terlapu: Aditya Institute of Technology and Management
Annals of Data Science, 2025, vol. 12, issue 4, No 2, 1157-1187
Abstract:
Abstract Alcohol's dehydrating effects can cause vocal cords to dry out, potentially causing temporary voice changes and increasing the risk of vocal strain or damage. Short-term changes in pitch, volume, and alcohol consumption can cause voice clarity, which typically returns to normal after the effects of alcohol have subsided. Data science improves voice recognition by analyzing large volumes of voice data, training machine learning (ML) models, extracting meaningful features, and using deep learning and natural language processing techniques. The research paper proposes a novel approach for identifying and classifying individuals as drinkers or non-drinkers based on their voice patterns. We collect voice data from both drinkers and non-drinkers. The study utilizes an ensemble ML technique known as stacking to combine the predictive power of multiple models, including Naive Bayes, K-NN(Nearest Neighbors), Decision (DTS) Trees, and Support (SVM) Vector Machine. Different metrics, like AUC, CA, F1 score, Recall, and precision, are implemented to evaluate the performance of each model. The stacking ensemble model stands out with the highest AUC of 0.9890, showing its excellent capability to distinguish between individuals who drink and those who don't. The SVM model also performs exceptionally well, with an AUC of 0.9861. The study shows the efficacy of the ensemble ML approach for identifying voice-based drinkers, offering significant insights for creating intelligent systems to detect alcohol-related voice issues accurately. This research advanced ensemble Stacking ML techniques in alcohol use disorder detection and opened possibilities for developing real-world applications in healthcare and behavioral analysis.
Keywords: Alcohol; Ensemble learning; Machine learning; Staking; Voice parameters (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40745-024-00559-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:12:y:2025:i:4:d:10.1007_s40745-024-00559-8
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-024-00559-8
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().