EconPapers    
Economics at your fingertips  
 

Research and Application of GPS Trajectory Data Visualization

Li Cai (), Yifan Zhou (), Yu Liang () and Jing He ()
Additional contact information
Li Cai: Fudan University
Yifan Zhou: Yunnan University
Yu Liang: Yunnan University
Jing He: Yunnan University

Annals of Data Science, 2018, vol. 5, issue 1, No 5, 43-57

Abstract: Abstract Taxi trajectory data is a kind of massive traffic data with spatial–temporal dimensions, and plays a key role in traffic management, travel analysis and route recommendation for residents. Analyzing trajectory data with traditional methods is complicated, but visualization techniques can intuitively reflect the change trend of spatial–temporal data and facilitate the mining of knowledge and laws in the data. A novel taxi trajectory data visualization and analysis system, TaxiVis, has been designed and developed in this study. This system not only displays the traveling routes of every taxi on the map at the micro-level, dynamically analyzing every taxi’s operating indicators with varying time, but also displays the operating statistics of every taxi company at the macro-level. In addition, the TaxiVis provides route inquiry recommendation functions for users by GLTC algorithm. Implementation of front-end functions of this system are based on Node.js, D3.js and Baidu map, and the trajectory data has been stored in MySQL database. We evaluate TaxiVis with the trajectory dataset collected from 6599 taxis in Kunming. Experimental results show that the system can effectively process and analyze trajectory data, and provide precise data supporting and presentation for the comprehensive evaluation of taxi operation efficiency and mining the drivers’ intelligence.

Keywords: Visualization; GPS trajectory data; Taxi operation efficiency; Route recommendation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-017-0132-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:5:y:2018:i:1:d:10.1007_s40745-017-0132-1

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-017-0132-1

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aodasc:v:5:y:2018:i:1:d:10.1007_s40745-017-0132-1