Region Based Instance Document (RID) Approach Using Compression Features for Authorship Attribution
N. V. Ganapathi Raju () and
Someswara Rao Chinta
Additional contact information
N. V. Ganapathi Raju: Gokaraja Rangaraju Institute of Engineering and Technology
Someswara Rao Chinta: SRKR Engineering College
Annals of Data Science, 2018, vol. 5, issue 3, No 7, 437-451
Abstract:
Abstract Authorship attribution is concerned with identifying authors of disputed or anonymous documents, which are potentially conspicuous in legal, criminal/civil cases, threatening letters and terroristic communications also in computer forensics. There are two basic approaches for authorship attribution one is instance based (treat each training text individually) and the other is profile based (treat each training text cumulatively). Both of these methods have their own advantages and disadvantages. The present paper proposes a new region based document model for authorship identification, to address the dimensionality problem of instance based approaches and scalability problem of profile based approaches. The proposed model concatenates a set of individual ‘n’ instance documents of the author as a single region based instance document (RID). On the RID compression based similarity distance method is used. The compression based methods requires no pre-processing and easy to apply. This paper uses Gzip compression algorithm with two compression based similarity measures NCD, CDM. The proposed compression model is character based and it can automatically capture easily non word features such as word stems, punctuations etc. The only disadvantage of compression models is complexity is high. The proposed RID approach addresses this issue by reducing the repeated words in the document. The present approach is experimented on English editorial columns. We achieved approximately 98% of accuracy in identifying the author.
Keywords: GZip compressor; NCD and CDM measures; Authorship identification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40745-018-0145-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:5:y:2018:i:3:d:10.1007_s40745-018-0145-4
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-018-0145-4
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().