Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem
Anjan Mukherjee () and
Abhik Mukherjee ()
Additional contact information
Anjan Mukherjee: Tripura University
Abhik Mukherjee: ITS Dental College
Annals of Data Science, 2022, vol. 9, issue 3, No 11, 625 pages
Abstract:
Abstract It has been found that fuzzy sets, rough sets and soft sets are closely related concepts. Many complicated problems in economics, engineering, social sciences, medical science and many other fields involve uncertain data. These problems, which one comes in real life, cannot be solved using classical mathematical methods. There are several well-known theories to describe uncertainty, for instance, fuzzy set theory, rough set theory, and other mathematical tools. But all of these theories have their inherit difficulties as pointed out by D. Molodtsov. In 1999, D. Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainties. The concept of rough sets, proposed by Z. Pawlak as a framework for the construction of approximations of concepts. It is a formal tool for modeling and processing insufficient and incomplete information. Zhou and Wu first proposed the concept of intuitionistic fuzzy rough sets (IFrough sets). The aim of this paper is to introduce the concept of interval-valued intuitionistic fuzzy soft rough sets (IVIFS rough sets). We also investigate some properties of IVIFS rough approximation operators. Some basic operations and properties are studied. Lastly applications have been shown in decision making problems.
Keywords: Fuzzy set; Rough set; Soft set; Intuitionistic fuzzy rough set; Interval-valued fuzzy rough soft set; 03E72; 90B50; 03E75 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s40745-022-00370-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:9:y:2022:i:3:d:10.1007_s40745-022-00370-3
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-022-00370-3
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().