Einsatz von Machine-Learning-Verfahren in amtlichen Unternehmensstatistiken
Use of machine learning in official business statistics
Florian Dumpert () and
Martin Beck ()
Additional contact information
Florian Dumpert: Universität Bayreuth
Martin Beck: Statistisches Bundesamt
AStA Wirtschafts- und Sozialstatistisches Archiv, 2017, vol. 11, issue 2, No 3, 83-106
Abstract:
Zusammenfassung Aufgabe der amtlichen Unternehmensstatistiken ist die Bereitstellung von Informationen über Struktur und Entwicklung der Wirtschaft, die sie durch Erhebungen, die Nutzung von Verwaltungsdaten, den Zukauf kommerzieller Daten und die Verknüpfung von Mikrodaten gewinnt. In jüngster Zeit wurde darüber hinaus auch der Einsatz von Machine-Learning-Verfahren in amtlichen Unternehmensstatistiken experimentell erprobt, und zwar bei Zuordnungsentscheidungen und der Generierung neuer Informationen. In diesem Beitrag wird das Vorgehen im Überblick dargestellt. Dazu werden zunächst die Methodik des maschinellen Lernens in den Grundzügen dargestellt, bisherige Anwendungsgebiete außerhalb und in der amtlichen Statistik beschrieben sowie die in der Unternehmensstatistik experimentell eingesetzten Verfahren erläutert. Anschließend wird die praktische Anwendung von Support Vector Machines und Random Forests auf fünf konkrete Aufgabenstellungen in ausgewählten Unternehmensstatistiken dargestellt. Abschließend werden die bisherigen Erfahrungen zusammenfassend bewertet und potenzielle weitere Aufgabenstellungen sowie absehbare Weiterentwicklungen der maschinellen Lernverfahren aufgezeigt.
Keywords: Maschinelles Lernen; Random Forest; Support Vector Machine; Unternehmensstatistik; Machine learning; Random Forest; Support Vector Machine; Business statistics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11943-017-0208-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:astaws:v:11:y:2017:i:2:d:10.1007_s11943-017-0208-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11943/PS2
DOI: 10.1007/s11943-017-0208-6
Access Statistics for this article
AStA Wirtschafts- und Sozialstatistisches Archiv is currently edited by Ralf Münnich
More articles in AStA Wirtschafts- und Sozialstatistisches Archiv from Springer, Deutsche Statistische Gesellschaft - German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().