EconPapers    
Economics at your fingertips  
 

Ein Framework für Data Literacy

A Framework for Data Literacy

Katharina Schüller ()
Additional contact information
Katharina Schüller: STAT-UP Statistical Consulting & Data Science GmbH

AStA Wirtschafts- und Sozialstatistisches Archiv, 2019, vol. 13, issue 3, No 9, 297-317

Abstract: Zusammenfassung Digitalisierung und Datafizierung werden das Leben und Arbeiten im 21. Jahrhundert nachhaltig verändern. Daten sind die Ausgangsbasis für Wissens- bzw. Wertschöpfung als Grundlage für bessere Entscheidungen. Um systematisch Wissen bzw. Wert aus Daten zu schöpfen, ist deshalb zukünftig in allen Sektoren und Disziplinen die Fähigkeit, planvoll mit Daten umzugehen und sie im jeweiligen Kontext bewusst einsetzen und hinterfragen zu können, von entscheidender Bedeutung. Dies wird als Data Literacy bezeichnet und umfasst die Fähigkeiten, Daten auf kritische Art und Weise zu sammeln, zu managen, zu bewerten und anzuwenden. Hierfür bedarf es eines Kompetenzrahmens, d.h. eines Modells zur strukturierten Beschreibung von effektivem Verhalten in einem gegebenen Aufgabenkontext. Er umfasst Kompetenzen, deren Definitionen und daraus abgeleitete Verhaltensindikatoren. Ein derartiger Kompetenzrahmen soll alle Stufen des Wissens- bzw. Wertschöpfungsprozesses aus Daten abbilden; er soll alle Kompetenzdimensionen erfassen: (a) Wissen, (b) Fertigkeiten, (c) Fähigkeiten, (d) Motivation und (Wert-)Haltung; er soll es erlauben, die erfassten Kompetenzen in konkrete und testbare Lern- oder Kompetenzziele zu überführen; und er soll der die Interdisziplinarität der Aufgabe reflektieren, also widerspiegeln, dass neben Datenexperten auch Fachexperten, Datenschützer und Datenethiker benötigt werden. Dieser Beitrag stellt das neu entwickelte Data Literacy Framework vor und ist eine gekürzte Fassung der Studie „Future Skills: Ein Framework für Data Literacy“ (Arbeitspapier 47) des Hochschulforums Digitalisierung.

Keywords: Statistical Literacy; Datenethik; Kompetenzrahmen; Datenkompetenz; Datenkultur; A20; D80; D83; M14 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11943-019-00261-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:astaws:v:13:y:2019:i:3:d:10.1007_s11943-019-00261-9

Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11943/PS2

DOI: 10.1007/s11943-019-00261-9

Access Statistics for this article

AStA Wirtschafts- und Sozialstatistisches Archiv is currently edited by Ralf Münnich

More articles in AStA Wirtschafts- und Sozialstatistisches Archiv from Springer, Deutsche Statistische Gesellschaft - German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:astaws:v:13:y:2019:i:3:d:10.1007_s11943-019-00261-9