A Low-Effort Recommendation System with High Accuracy
Jella Pfeiffer () and
Michael Scholz ()
Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, 2013, vol. 5, issue 6, 397-408
Abstract:
In recent studies on recommendation systems, the choice-based conjoint analysis has been suggested as a method for measuring consumer preferences. This approach achieves high recommendation accuracy and does not suffer from the start-up problem because it is also applicable for recommendations for new consumers or of new products. However, this method requires massive consumer input, which causes consumer reluctance. In a simulation study, we demonstrate the high accuracy, but also the high user’s effort for using a utility-based recommendation system using a choice-based conjoint analysis with hierarchical Bayes estimation. In order to reduce the conflict between consumer effort and recommendation accuracy, we develop a novel approach that only shows Pareto-efficient alternatives and ranks them according to the number of dominated attributes. We demonstrate that, in terms of the decision accuracy of the recommended products, the ranked Pareto-front approach performs better than a recommendation system that employs choice-based conjoint analysis. Furthermore, the consumer’s effort is kept low and comparable to that of simple systems that require little consumer input. Copyright Springer Fachmedien Wiesbaden 2013
Keywords: Recommendation systems; Preference measurement; Pareto-front; Effort; Accuracy; Simulation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s12599-013-0295-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:binfse:v:5:y:2013:i:6:p:397-408
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/12599
DOI: 10.1007/s12599-013-0295-z
Access Statistics for this article
Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK is currently edited by Martin Bichler
More articles in Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK from Springer, Gesellschaft für Informatik e.V. (GI)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().