EconPapers    
Economics at your fingertips  
 

Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms

Matthias Carnein () and Heike Trautmann
Additional contact information
Matthias Carnein: University of Münster
Heike Trautmann: University of Münster

Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, 2019, vol. 61, issue 3, No 4, 277-297

Abstract: Abstract Analyzing data streams has received considerable attention over the past decades due to the widespread usage of sensors, social media and other streaming data sources. A core research area in this field is stream clustering which aims to recognize patterns in an unordered, infinite and evolving stream of observations. Clustering can be a crucial support in decision making, since it aims for an optimized aggregated representation of a continuous data stream over time and allows to identify patterns in large and high-dimensional data. A multitude of algorithms and approaches has been developed that are able to find and maintain clusters over time in the challenging streaming scenario. This survey explores, summarizes and categorizes a total of 51 stream clustering algorithms and identifies core research threads over the past decades. In particular, it identifies categories of algorithms based on distance thresholds, density grids and statistical models as well as algorithms for high dimensional data. Furthermore, it discusses applications scenarios, available software and how to configure stream clustering algorithms. This survey is considerably more extensive than comparable studies, more up-to-date and highlights how concepts are interrelated and have been developed over time.

Keywords: Stream clustering; Data streams; Online clustering; Pattern recognition; Decision support; Data representation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s12599-019-00576-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:binfse:v:61:y:2019:i:3:d:10.1007_s12599-019-00576-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/12599

DOI: 10.1007/s12599-019-00576-5

Access Statistics for this article

Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK is currently edited by Martin Bichler

More articles in Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK from Springer, Gesellschaft für Informatik e.V. (GI)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:binfse:v:61:y:2019:i:3:d:10.1007_s12599-019-00576-5