EconPapers    
Economics at your fingertips  
 

Discovering Data Quality Problems

Ruojing Zhang (), Marta Indulska () and Shazia Sadiq ()
Additional contact information
Ruojing Zhang: The University of Queensland
Marta Indulska: The University of Queensland
Shazia Sadiq: The University of Queensland

Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, 2019, vol. 61, issue 5, No 3, 575-593

Abstract: Abstract Existing methodologies for identifying data quality problems are typically user-centric, where data quality requirements are first determined in a top-down manner following well-established design guidelines, organizational structures and data governance frameworks. In the current data landscape, however, users are often confronted with new, unexplored datasets that they may not have any ownership of, but that are perceived to have relevance and potential to create value for them. Such repurposed datasets can be found in government open data portals, data markets and several publicly available data repositories. In such scenarios, applying top-down data quality checking approaches is not feasible, as the consumers of the data have no control over its creation and governance. Hence, data consumers – data scientists and analysts – need to be empowered with data exploration capabilities that allow them to investigate and understand the quality of such datasets to facilitate well-informed decisions on their use. This research aims to develop such an approach for discovering data quality problems using generic exploratory methods that can be effectively applied in settings where data creation and use is separated. The approach, named LANG, is developed through a Design Science approach on the basis of semiotics theory and data quality dimensions. LANG is empirically validated in terms of soundness of the approach, its repeatability and generalizability.

Keywords: Data quality; Open data; Design science (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s12599-019-00608-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:binfse:v:61:y:2019:i:5:d:10.1007_s12599-019-00608-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/12599

DOI: 10.1007/s12599-019-00608-0

Access Statistics for this article

Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK is currently edited by Martin Bichler

More articles in Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK from Springer, Gesellschaft für Informatik e.V. (GI)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:binfse:v:61:y:2019:i:5:d:10.1007_s12599-019-00608-0