Identifying Competitive Attributes Based on an Ensemble of Explainable Artificial Intelligence
Younghoon Lee ()
Additional contact information
Younghoon Lee: Seoul National University of Science and Technology
Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, 2022, vol. 64, issue 4, No 2, 407-419
Abstract:
Abstract Competitor analysis is a fundamental requirement in both strategic and operational management, and the competitive attributes of reviewer comments are a crucial determinant of competitor analysis approaches. Most studies have focused on identifying competitors or detecting comparative sentences, not competitive attributes. Thus, the authors propose a method based on explainable artificial intelligence (XAI) that can detect competitive attributes from consumers’ perspectives. They construct a model to classify the reviewer comments for each competitive product and calculate the importance of each keyword in the reviewer comments during the classification process. This is based on the assumption that keywords significantly influence product classification. The authors also propose an additional novel methodology that combines various XAI techniques such as local interpretable model-agnostic explanations, Shapley additive explanations, logistic regression, gradient-based class activation map, and layer-wise relevance propagation to build a robust model for calculating the importance of competitive attributes for various data sources.
Keywords: XAI; Ensemble; Competitor analysis; Competitive factors; Home appliance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12599-021-00737-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:binfse:v:64:y:2022:i:4:d:10.1007_s12599-021-00737-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/12599
DOI: 10.1007/s12599-021-00737-5
Access Statistics for this article
Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK is currently edited by Martin Bichler
More articles in Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK from Springer, Gesellschaft für Informatik e.V. (GI)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().