The relationship between DEA efficiency and the type of production function, the degree of homogeneity, and error variability
Yossi Hadad (),
Lea Friedman,
Victoria Rybalkin and
Zilla Sinuany-Stern ()
Central European Journal of Operations Research, 2013, vol. 21, issue 3, 595-607
Abstract:
In this paper, we use simulations to investigate the relationship between data envelopment analysis (DEA) efficiency and major production functions: Cobb-Douglas, the constant elasticity of substitution, and the transcendental logarithmic. Two DEA models were used: a constant return to scale (CCR model), and a variable return to scale (BCC model). Each of the models was investigated in two versions: with bounded and unbounded weights. Two cases were simulated: with and without errors in the production functions estimation. Various degrees of homogeneity (of the production function) were tested, reflecting a constant increasing and decreasing return to scale. With respect to the case with errors, three distribution functions were utilized: uniform, normal, and double exponential. For each distribution, 16 levels of the coefficient of variance (CV) were used. In all the tested cases, two measures were analysed: the percentage of efficient units (from the total number of units), and the average efficiency score. We applied a regression analysis to test the relationship between these two efficiency measures and the above parameters. Overall, we found that the degree of homogeneity has the largest effect on efficiency. Efficiency declines as the errors grow (as reflected by larger CV and of the expansion of the probability distribution function away from the centre). The bounds on the weights tend to smooth the effect, and bring the various DEA versions closer to one other. The type of efficiency measure has similar regression tendencies. Finally, the relationship between the efficiency measures and the explanatory variables is quadratic. Copyright Springer-Verlag 2013
Keywords: Data envelopment analysis (DEA); Production functions; Efficiency; Simulation; Kurtosis; Coefficient of variance (CV); Goodness of DEA in simulations; Regression analysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10100-012-0249-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:21:y:2013:i:3:p:595-607
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-012-0249-4
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().