EconPapers    
Economics at your fingertips  
 

A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization

Joana Dias, Humberto Rocha, Brígida Ferreira and Maria Lopes

Central European Journal of Operations Research, 2014, vol. 22, issue 3, 455 pages

Abstract: Intensity Modulated Radiotherapy Treatment (IMRT) is a technique used in the treatment of cancer, where the radiation beams are modulated by a multileaf collimator allowing the irradiation of the patient using non-uniform radiation fields from selected angles. Beam angle optimization consists in trying to find the best set of angles that should be used in IMRT planning. The choice of this set of angles is patient and pathology dependent and, in clinical practice, most of the times it is made using a trial and error procedure or simply using equidistantly distributed angles. In this paper we propose a genetic algorithm that aims at calculating good sets of angles in an automated way, given a predetermined number of angles. We consider the discretization of all possible angles in the interval [0 $$^{\circ }$$ , 360 $$^{\circ }$$ ], and each individual is represented by a chromosome with 360 binary genes. As the calculation of a given individual’s fitness is very expensive in terms of computational time, the genetic algorithm uses a neural network as a surrogate model to calculate the fitness of most of the individuals in the population. To explicitly consider the estimation error that can result from the use of this surrogate model, the fitness of each individual is represented by an interval of values and not by a single crisp value. The genetic algorithm is capable of finding improved solutions, when compared to the usual equidistant solution applied in clinical practice. The genetic algorithm will be described and computational results will be shown. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Genetic algorithms; Radiotherapy; IMRT; Surrogate model; Neural networks (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10100-013-0289-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:22:y:2014:i:3:p:431-455

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100

DOI: 10.1007/s10100-013-0289-4

Access Statistics for this article

Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger

More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:cejnor:v:22:y:2014:i:3:p:431-455