A methodology for automatic classification of breast cancer immunohistochemical data using semi-supervised Fuzzy c-means
Daphne Lai (),
Jonathan Garibaldi (),
Daniele Soria and
Christopher Roadknight
Central European Journal of Operations Research, 2014, vol. 22, issue 3, 475-499
Abstract:
Previously, a semi-manual method was used to identify six novel and clinically useful classes in the Nottingham Tenovus Breast Cancer dataset. 663 out of 1,076 patients were classified. The objectives of our work is three folds. Firstly, our primary objective is to use one single automatic method (post-initialisation) to reproduce the six classes for the 663 patients and to classify the remaining 413 patients. Secondly, we explore using semi-supervised fuzzy c-means with various distance metrics and initialisation techniques to achieve this. Thirdly, the clinical characteristics of the 413 patients are examined by comparing with the 663 patients. Our experiments use various amount of labelled data and 10-fold cross validation to reproduce and evaluate the classification. ssFCM with Euclidean distance and initialisation technique by Katsavounidis et al. produced the best results. It is then used to classify the 413 patients. Visual evaluation of the 413 patients’ classifications revealed common characteristics as those previously reported. Examination of clinical characteristics indicates significant associations between classification and clinical parameters. More importantly, association between classification and survival based on the survival curves is shown. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Breast cancer; Fuzzy clustering; Molecular classification (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10100-013-0318-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:22:y:2014:i:3:p:475-499
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-013-0318-3
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().