EconPapers    
Economics at your fingertips  
 

Dispatching rule selection with Gaussian processes

Jens Heger (), Torsten Hildebrandt () and Bernd Scholz-Reiter ()

Central European Journal of Operations Research, 2015, vol. 23, issue 1, 235-249

Abstract: Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in highly complex and dynamic scenarios, such as semiconductor manufacturing. Many dispatching rules are proposed in the literature, which perform well on specific scenarios. No rule is known, however, consistently outperforming all other rules. One approach to meet this challenge and improve scheduling performance is to select and switch dispatching rules depending on current system conditions. For this task machine learning techniques (e.g., Artificial Neural Networks) are frequently used. In this paper we investigate the use of a machine learning technique not applied to this task before: Gaussian process regression. Our analysis shows that Gaussian processes predict dispatching rule performance better than Neural Networks in most settings. Additionally, already a single Gaussian Process model can easily provide a measure of prediction quality. This is in contrast to many other machine learning techniques. We show how to use this measure to dynamically add additional training data and incrementally improve the model where necessary. Results therefore suggest, Gaussian processes are a very promising technique, which can lead to better scheduling performance (e.g., reduced mean tardiness) compared to other techniques. Copyright Springer-Verlag Berlin Heidelberg 2015

Keywords: Planning and scheduling; Dispatching rules; Machine learning; Gaussian processes; Production management and logistics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10100-013-0322-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:23:y:2015:i:1:p:235-249

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100

DOI: 10.1007/s10100-013-0322-7

Access Statistics for this article

Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger

More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:cejnor:v:23:y:2015:i:1:p:235-249