The use of spatial data mining methods for modeling HR challenges of generation Z in greater Poland Region
Magdalena Graczyk-Kucharska (),
Robert Olszewski and
Gerhard-Wilhelm Weber
Additional contact information
Magdalena Graczyk-Kucharska: Poznan University of Technology
Robert Olszewski: Warsaw University of Technology
Gerhard-Wilhelm Weber: Poznan University of Technology
Central European Journal of Operations Research, 2023, vol. 31, issue 1, No 8, 205-237
Abstract:
Abstract Challenges connected with neuroscience and the use of machine learning to support analytical processes encompass more and more areas, thus supporting practitioners and managerial decisions. These changes can also be seen in the area of human resource management and support for decisions on key future spending on the remuneration of future employees. The article presents an original spatial data enrichment and spatial data mining methodology used for the analysis of primary data based on a sample of 1149 young candidates from generation Z to measure the effectiveness of data mining learning methods. The studies used data collected directly from surveys that were “enriched” with spatial geolocation. The fact that the spatial context was taken into account in the studies made it possible to develop a model explaining the spatio-temporal differentiation of professional expectations of respondents from generation Z who were studying professions connected with broadly understood IT. The analyzes used modeling with linear polynomial regression, the neural network of a multi-layer perceptron type and the multivariate adaptive regression splines method in the variant with and without spatial data filtration. The use of different spatial data mining methods made it possible to compare the reliability of models of knowledge extraction from the data and to explain the significance of individual factors which affected the respondents' beliefs. The analysis shows that spatial filtering of the data generates twice lower mean squared error while effective application of machine learning methods requires the use of explanatory spatial data.
Keywords: Human resources; Modeling; Spatial data mining; Multivariate adaptive regression splines; Artificial neutral networks; Geolocalization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10100-022-00805-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:31:y:2023:i:1:d:10.1007_s10100-022-00805-5
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-022-00805-5
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().