AutoFusion of feature pruning for decision making in operations research
Pınar Karadayı Ataş () and
Süreyya Özöğür Akyüz ()
Additional contact information
Pınar Karadayı Ataş: Istanbul Arel University
Süreyya Özöğür Akyüz: Bahçeşehir University
Central European Journal of Operations Research, 2025, vol. 33, issue 1, No 2, 27-50
Abstract:
Abstract Recently, the fusion of algorithms in machine learning studies has taken a lot of attention, emphasizing the power of communal decision-making over-relying on a single decision-maker. One of the crucial questions in the aggregation of algorithms is which and how many models should be combined to achieve both the best accuracy and low complexity. It is already known in machine learning that as the complexity of the model increases too much, prediction accuracy decreases. There is a trade-off between these two features. In order to answer such questions, the diversity notion gets involved in overall consensus models. It is also shown that diversity alone does not determine the best ensemble (fusion), so accuracy and diversity together have been taken into account recently in such problems. We took into account those two notions simultaneously so that the number of algorithms and which algorithms should be in the ensemble is answered while solving the feature selection problems. The proposed method in this work is unique in that it includes an optimization model in the pruning phase, which finds the cardinality of the ensemble optimally. Using this optimization model, the size of the ensemble is found directly from the optimization model, instead of considered as a hyper-parameter. Our study shows a significant improvement in accuracy that achieves 0.702 on average among 8 datasets when compared to an unpruned case of 0.625. These results highlight the efficiency of our method both in model accuracy and in obtaining an optimal model complexity. We have validated our algorithm on different domains of data sets which shows better prediction accuracy values than existing ensemble-based feature selection methods.
Keywords: Feature selection; Ensemble learning; Ensemble pruning; Dynamic ensemble selection (DES); Convex concave programming (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10100-023-00901-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:33:y:2025:i:1:d:10.1007_s10100-023-00901-0
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-023-00901-0
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().