EconPapers    
Economics at your fingertips  
 

Case-based modeling and the SACS Toolkit: a mathematical outline

Brian Castellani () and Rajeev Rajaram
Additional contact information
Brian Castellani: Kent State University
Rajeev Rajaram: Kent State University

Computational and Mathematical Organization Theory, 2012, vol. 18, issue 2, No 2, 153-174

Abstract: Abstract Researchers in the social sciences currently employ a variety of mathematical/computational models for studying complex systems. Despite the diversity of these models, the majority can be grouped into one of three types: agent (rule-based) modeling, dynamical (equation-based) modeling and statistical (aggregate-based) modeling. The purpose of the current paper is to offer a fourth type: case-based modeling. To do so, we review the SACS Toolkit: a new method for quantitatively modeling complex social systems, based on a case-based, computational approach to data analysis. The SACS Toolkit is comprised of three main components: a theoretical blueprint of the major components of a complex system (social complexity theory); a set of case-based instructions for modeling complex systems from the ground up (assemblage); and a recommended list of case-friendly computational modeling techniques (case-based toolset). Developed as a variation on Byrne (in Sage Handbook of Case-Based Methods, pp. 260–268, 2009), the SACS Toolkit models a complex system as a set of k-dimensional vectors (cases), which it compares and contrasts, and then condenses and clusters to create a low-dimensional model (map) of a complex system’s structure and dynamics over time/space. The assembled nature of the SACS Toolkit is its primary strength. While grounded in a defined mathematical framework, the SACS Toolkit is methodologically open-ended and therefore adaptable and amenable, allowing researchers to employ and bring together a wide variety of modeling techniques. Researchers can even develop and modify the SACS Toolkit for their own purposes. The other strength of the SACS Toolkit, which makes it a very effective technique for modeling large databases, is its ability to compress data matrices while preserving the most important aspects of a complex system’s structure and dynamics across time/space. To date, while the SACS Toolkit has been used to study several topics, a mathematical outline of its case-based approach to quantitative analysis (along with a case study) has yet to be written–hence the purpose of the current paper.

Keywords: Complex social systems; Case-based method; Mathematical modeling; Computational modeling; Sociological method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10588-012-9114-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:comaot:v:18:y:2012:i:2:d:10.1007_s10588-012-9114-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10588

DOI: 10.1007/s10588-012-9114-1

Access Statistics for this article

Computational and Mathematical Organization Theory is currently edited by Terrill Frantz and Kathleen Carley

More articles in Computational and Mathematical Organization Theory from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:comaot:v:18:y:2012:i:2:d:10.1007_s10588-012-9114-1