Exploring Depth Versus Breadth in Knowledge Management Strategies
Scott F. Turner (),
Richard A. Bettis () and
Richard M. Burton ()
Additional contact information
Scott F. Turner: University of North Carolina at Chapel Hill
Richard A. Bettis: University of North Carolina at Chapel Hill
Richard M. Burton: Duke University
Computational and Mathematical Organization Theory, 2002, vol. 8, issue 1, No 3, 49-73
Abstract:
Abstract This paper provides an early attempt at operationalizing and testing the concept of knowledge strategy. Using a computer-simulated product development process, we compare the performance of generalist and specialist knowledge management strategies under conditions of market turbulence. The generalist knowledge strategy emphasizes breadth of knowledge in product development teams, while the specialist strategy focuses on depth of knowledge. Our generalist and specialist strategies are grounded in Eastern and Western perspectives of knowledge management, respectively. A primary difference between these two approaches is the strong emphasis on cross-learning, or learning across team members, in the Eastern perspective relative to the Western perspective. As such, we examine the performance implications of different modes of cross-learning for teams utilizing the generalist knowledge strategy. Specifically, we examine three modes of cross-learning, which are reflected in the use of three learning decision rules: (1) averaging, (2) majority, and (3) hot hand. A learning decision rule indicates how decision-makers learn from their fellow team members. Under the first rule, the decision-maker adopts an average of the beliefs held by fellow team members. Under the second rule, if a majority of fellow team members agree on a particular solution, then the decision-maker adopts the beliefs held by the majority. Under the third rule, the decision-maker learns from the team member whose beliefs have been consistent with market desires most recently. Surprisingly, we find that specialist strategies outperform generalist strategies under conditions of low and high market turbulence. We also find that cross-learning can be beneficial or detrimental, contingent upon the mode of learning. Generalist teams utilizing the averaging decision rule perform significantly worse, while generalist teams utilizing the hot hand decision rule perform significantly better.
Keywords: knowledge management; product development; organizational learning; computer simulation; decision-making; specialist; generalist (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1023/A:1015180220717 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comaot:v:8:y:2002:i:1:d:10.1023_a:1015180220717
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10588
DOI: 10.1023/A:1015180220717
Access Statistics for this article
Computational and Mathematical Organization Theory is currently edited by Terrill Frantz and Kathleen Carley
More articles in Computational and Mathematical Organization Theory from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().